Peter Carmeliet Lab

Research focus

​Global research efforts have yielded the sequence of the entire human genome. Even though ‘only’ ~ 35,000 genes have been identified, many of these have numerous transcripts encoding several proteins, which can be further modified post-translationally. Consequently, over 100,000 proteins are estimated to determine our health and diseases. 

One of the great challenges in biomedical research for the next decade is now to unravel the function and interaction of these disease candidate genes and to determine how their function is influenced by modifier genes and environmental factors. This would allow us to understand the pathogenetic role of these genes in common medically important disorders, to identify novel diagnostic tools and to develop safer and more effective treatments. 

Our lab, called the 'Laboratory of Angiogenesis and Neurovascular Link', uses the following genetic techniques to perform the proposed ‘functional genomics’ studies:

Mouse genetics

By studying biological responses in genetically manipulated mice overexpressing defined genes, lacking defined genes or carrying mutagenized genes, it is possible to achieve novel insights into the role and relevance of genes in vivo. The transgenic animals thus obtained may represent models of human disease, which then can be used for the evaluation of new genetic or other therapeutic strategies. Furthermore, the gene-deficient or mutant mice and the tissues or cell lines derived from them provide unique material for gene profiling in order to identify and characterize novel genes involved in specific processes. Alternatively, the discovery of unexpected novel phenotypes associated with a specific knockout or mutation may implicate a previously unrecognized involvement of a particular gene in a given disorder.

Zebrafish genetics

Most of the common diseases are complex and multi-factorial in nature. Due to the labor-intensive and time-consuming character of mouse transgene technology, the mouse model is less suited for simultaneous analysis of gene products interacting with each other, and limited to the analysis of a restricted number of genes. Semi-high throughput analysis of genetic pathways or gene interactions can, however, be performed in the zebrafish. Indeed, due to its small size, easy breeding, short life-span, embryo transparency and amenability to morpholino knock-down of gene expression, the zebrafish constitutes a unique and powerful model.

Human genetics

It is essential to confirm that the findings obtained in mouse and zebrafish genetics are valuable for human health. This can, in part, be achieved by performing association or mutational studies in affected humans. In addition, we will use genetic linkage, in combination with zebrafish genetics, to positionally clone and identify novel disease candidate genes.

Our research is focused on two major areas of medical health problems: cardiovascular and neurological.

Cardiovascular

We study the molecular basis of cardiovascular disorders including myocardial infarction, stroke, atherosclerosis, thrombosis, aneurysms, restenosis, heart failure, arrhythmias, etc. We especially study the role of fibrinolytic and matrix metalloproteinases and coagulation proteinases. A major focus has been on angiogenesis (formation of blood vessels), which is not only essential for development but also for more than 70 disorders (cancer, ischemia, etc). In particular, we study the role of VEGF, hypoxia-signaling and oxygen sensing in angiogenic disorders and the molecular mechanisms of lymphangiogenesis (formation of lymphatic vessels – critical for tumor metastasis) and stem cell-mediated vessel growth.

Neurological

Blood vessels also affect the nervous system. Through gene-targeting experiments, we discovered a novel and unexpected role of VEGF in motor neuron degeneration. Ongoing studies are focused on unraveling the mechanisms of how VEGF affects motor neuron survival, confirming the relevance for human disease (association studies), and developing therapeutic strategies. In addition, we study the molecular signals responsible for self-renewal and multipotentiality of neural stem cells, and will test whether these molecules can be employed for neural tissue regeneration in CNS injury, ischemia or degeneration.

To optimize efficiency, increase productivity, promote interdisciplinary research, facilitate training and education of junior scientists, and streamline transfer of knowledge and expertise, Peter Carmeliet has organized the technical resources around an infrastructure of expert core facilities.

Publications

Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastomaSnuderl M* Batista A* Kirkpatrick N* Ruiz De Almodovar Egea C* Riedemann L Walsh E Anolik R Huang Y Martin J Kamoun W Knevels E Schmidt T Farrar C Vakoc B Mohan N Chung E Roberge S Peterson T Bais C Zhelyazkova B Yip S Hasselblatt M Rossig C Niemeyer E Ferrara N Klagsbrun M Duda D Fukumura D Xu L Carmeliet P Jain RCELL, 152, 1065-76, 2013* These authors contributed equally
Role of PFKFB3-Driven Glycolysis in Vessel SproutingDe Bock K* Georgiadou M* Schoors S Kuchnio A Wong B Cantelmo A Quaegebeur A Ghesquiere B Cauwenberghs S Eelen G Phng L Betz I Tembuyser B Brepoels K Welti J Geudens I Segura I Cruys B Bifari F Decimo I Blanco R Wyns S Vangindertael J Rocha S Collins R Munck S Daelemans D Imamura H Devlieger R Rider M Van Veldhoven P Schuit F Bartrons R Hofkens J Fraisl P Telang S Deberardinis R Schoonjans L Vinckier S Chesney J Gerhardt H Dewerchin M Carmeliet PCELL, 154, 651-63, 2013* These authors contributed equally
Inhibition of Tumor Angiogenesis and Growth by a Small-Molecule Multi-FGF Receptor Blocker with Allosteric PropertiesBono F* De Smet F* Herbert C De Bock K Georgiadou M Fons P Tjwa M Alcouffe C Ny A Bianciotto M Jonckx B Murakami M Lanahan A Michielsen C Sibrac D Dol-Gleizes F Mazzone M Zacchigna S Herault J Fischer C Rigon P Ruiz De Almodovar Egea C Claes F Blanc I Poesen K Zhang J Segura I Gueguen G Bordes M Lambrechts D Broussy R Van De Wouwer M Michaux C Shimada T Jean I Blacher S Noel A Motte P Rom E Rakic J Katsuma S Schaeffer P Yayon A Van Schepdael A Schwalbe H Gervasio F Carmeliet G Rozensky J Dewerchin M Simons M Christopoulos A Herbert J* Carmeliet P*CANCER CELL, 23, 477-88, 2013* These authors contributed equally
Molecular mechanisms and clinical applications of angiogenesisCarmeliet P, Jain RNATURE, 473, 298-307, 2011
Basic and therapeutic aspects of angiogenesisPotente M, Gerhardt H, Carmeliet PCELL, 146, 873-87, 2011

News

Wake-up call for more research into cell metabolism

09/07/2014 - New therapeutic avenues for diabetes, inflammatory conditions & cancer.

Partially Blocking Blood Vessels’ Energy Source May Stop Cancer Progression, Blindness, and Other Conditions

12/12/2013 - New research reveals a new strategy to block blood vessel growth in various pathological conditions by depriving them of energy and building blocks necessary for growth.

New target for the fight against cancer and diseases as a result of excessive blood vessel formation

01/08/2013 - New blood vessel formation (angiogenesis) stimulates the growth of cancer and other diseases. Anti-angiogenic inhibitors slow down cancer growth by disrupting the blood supply to the tumor.

New angle to combat malignant brain tumors in children

28/02/2013 - Peter Carmeliet and his team (VIB-KU Leuven) joined forces with scientists at Massachusetts General Hospital in Harvard to study the role of the placental growth factor (PIGF) in the growth of this brain tumor.

Cell-VIB Symposium: Angiogenesis, Metabolic Regulation and Cancer Biology (July 6-8 2012, Leuven Belgium)

06/07/2012 - VIB has teamed up with Cell for a symposium about angiogenesis, metabolic regulation and cancer biology, on July 6-8 2012 in Leuven, Belgium. Registration is now open.

AXA supports cancer research of Peter Carmeliet (VIB/KU Leuven) with 1 million euro

24/05/2012 - AXA strongly expanded its support to scientific research on the global risks on the environment, human health and societies. In Belgium 1 million euro goes to Peter Carmeliet (VIB/KU Leuven).

Nature publication: a new role for Vascular Endothelial Growth Factor (VEGF) in regulating skin cancer stem cells

19/10/2011 - In a study published in Nature, researchers identify a new role for Vascular Endothelial Growth Factor (VEGF) in regulating skin cancer stem cells.

Towards a more efficient therapy for a specific form of leukemia

14/06/2011 - Researchers at the VIB Vesalius Research Centre, K.U. Leuven, under the direction of Peter Carmeliet, have investigated the role of placental growth factor (PlGF) in mice with CML

White blood cells as a new diagnostic technique for intestinal cancer

03/02/2011 - The Fournier-Majoie Foundation for Innovation (FFMI) has awarded Max Mazzone of VIB-K.U.Leuven a grant for research into a new method of early detection of colon cancer.

VIB-K.U.Leuven scientists clear the way to alternative anti-angiogenic cancer therapy

07/01/2011 - Normalizing abnormal tumor blood vessels through HRG (histidine-rich glycoprotein) prevents metastasis of tumor cells and enhances chemotherapy efficiency, VIB researchers discovered.

Double gold for VIB and K.U.Leuven - Bart De Strooper and Peter Carmeliet awarded ERC grants totaling 5 million euro

18/11/2010 - VIB researchers Peter Carmeliet and Bart De Strooper have both been awarded Advanced Grants from the European Research Council. ERC Advanced Grants are the most prestigious European research grants, spanning a period of 5 years.

VIB-K.U.Leuven and Oxford Biomedica announce collaborative research project for treatment of ALS

01/07/2010 - Oxford BioMedica and VIB-K.U.Leuven announce an award by the UK MND Association of a research grant to support the further development for the treatment of ALS with gene therapy.

International Recognition for Top VIB Research

28/06/2010 - Two of the five FWO prizes of EUR 100,000 were awarded to VIB scientists, namely Dirk Inzé (VIB-UGent) and Peter Carmeliet (VIB-K.U.Leuven).

Development of Leuven’s candidate medicine against nerve disease ALS moves into higher gear

10/02/2010 - ​The European Medicines Agency (EMEA) has recognized a Leuven lab’s candidate medicine to combat the neurodegenerative disease ALS (Amyotrophic Lateral Sclerosis) as a 'weesgeneesmiddel' (‘orphan medicine’).

Research on heart and vascular diseases earns Peter Carmeliet of VIB and K.U.Leuven the Ernst Jung Medical Award 2010

08/01/2010 - ​His pioneering research on heart and vascular diseases and thrombosis has earned Peter Carmeliet the prestigious Ernst Jung Medical Award, one of the highest European prizes for biomedical research.

New strategy to combat cancer - Streamlining blood vessel walls

12/02/2009 - Our blood vessels have a built-in rescue-mechanism that springs into action when there is insufficient oxygen in our tissues. VIB scientists at K.U.Leuven have now discovered that this mechanism can be mobilized in the battle against cancer.

First trial in patients with a potential treatment of the incurable ALS muscle disease

01/12/2008 - Permission has been granted to start the first safety and tolerability trial on patients for a remedy for ALS. ALS is an incurable, paralyzing neurodegenerative disorder that strikes 5 persons in every 100,000.

Progress toward an alternative for EPO - Gas6 offers remedy where EPO fails today

31/01/2008 - VIB scientists have been researching the role of the Gas6 protein. This substance has proven successful in the treatment of mice with anemia, without causing the side effects that the use of EPO entails.

On the road to a new cancer therapy − starving the tumor

29/10/2007 - VIB scientists connected to the Katholieke Universiteit Leuven, in collaboration with the Flemish biotech company ThromboGenics, have been studying the anti-cancer action of anti-PLGF.

Tadpole soon to help in the fight against cancer and lymphedema

16/08/2005 -

Promising results in the battle against incurable ALS muscle disease

28/11/2004 - Research shows that rats with a severe form of ALS live longer following the administration of the VEGF protein as a remedy. These results open up new possibilities for the use of VEGF in the treatment of ALS.

Is the zebra fish leading us to new therapies?

28/10/2004 - VIB researchers have shown that new blood vessels do not grow in random directions, but that they are guided by specific signal molecules. This is a major step in the development of new targeted forms of therapeutic angiogenesis.

Growth factor shows therapeutic effects in the treatment of the muscle disorder ALS

19/08/2004 - Belgian researchers from VIB (the Flanders Interuniversity Institute for Biotechnology), lead by Prof. Peter Carmeliet (K.U.Leuven) already indicated the importance of the VEGF growth factor in this illness.

Gene therapy with growth factor seems promising therapy for incurable muscle disorder ALS

26/05/2004 - Researchers from VIB (the Flanders Interuniversity Institute for Biotechnology), lead by Prof. Peter Carmeliet (K.U.Leuven) already indicated the importance of the VEGF protein in this illness, on the basis of genetic studies.

Peter Carmeliet

Peter Carmeliet

Research area(s)

Model organism(s)

Bio

​M.D.: Univ. of Leuven, Leuven, Belgium, 1984
PhD: Univ. of Leuven, Leuven, Belgium, 1989
Associated Res. Scientist: Harvard Medical School, Boston, USA, 1989-90
Associated Res. Scientist: Whitehead Institute, MIT, Cambridge, USA, 1990-92
VIB Group leader since 1996
EMBO Member
Adjunct Director, Dept. of Transgene Technology and Gene Therapy (now VRC) since 2001
Department Director, VIB Vesalius Research Center, K.U.Leuven since 2008
Honorary doctorate at the Johann Wolfgang Goethe-Universität in Frankfurt am Main, 2010

Contact Info

VIB Vesalius Research CenterKU LeuvenO&N 4, 9e verdCampus GasthuisbergHerestraat 49, bus 912 3000 LEUVENRoute description
peter.carmeliet@vib-kuleuven.bePhone: +32 16 37 32 04