Jenny Russinova Lab

Research focus

​The main interest of the group is the signal transduction pathway that plant cells use to respond to the growth promoting hormones, brassinosteroids. Brassinosteroids are ubiquitously distributed throughout the plant kingdom sterol derivatives. Brassinosteroid deficient mutants display dramatic developmental defects including dwarfism, male sterility, delayed flowering, reduced apical dominance, and a light-grown morphology when grown in dark. Like their animal counterparts, brassinosteroids regulate the expression of numerous genes, impact the activity of complex metabolic pathways, contribute to the regulation of cell division and differentiation, and help control overall development. Brassinosteroids regulate photomorphogenesis, etiolation and cell expansion. Brassinosteroids have a broad spectrum of activities that have a positive effect on the quantity and quality of crops and they increase plant resistance to stress and pathogens.

Brassinosteroid pathway is one of the best-defined signal transduction pathways in plants. In Arabidopsis, brassinosteroids are perceived by receptor kinases that transduce the signal from the cell surface to the nucleus by an intracellular cascade of phosphorylation mediated protein-protein interactions, involving kinases, phosphatases, 14-3-3 proteins, and nuclear transcription factors. In addition, the brassinosteroid signaling is regulated by the plant endocytic machinery because the increased endosomal localization of the brassinosteroid receptor enhances the signaling.

The main objective of the group is to combine genetic, molecular and cell biology tools to study mechanism of brassinosteroid signaling regulation in plants. One aspect of the research is to understand the subcellular compartmentalization and trafficking of brassinosteroid receptor complexes and their relevance to brassinosteroids physiological responses. We use chemical genomics and proteomics to investigate the subcellular localization, mobility, transport routes and binding interactions of different brassinosteroid signaling components. In addition we want to position important downstream brassinosteroid signaling regulators such as the Arabidopsis GSK3-like kinases in subcellular compartments important for brassinosteroid receptor activity.

The potential application of brassinosteroids in agriculture is based not only on their ability to increase crop yields but also on the fact that they increase resistance to different stress conditions such as high salinity, drought, fungal and viral infections. Thus, unraveling the regulatory mechanisms of brassinosteroid signaling on the level of signaling components, brassinosteroid target genes, endomembrane trafficking regulators or identifying chemicals that modulate any of those components can be used to develop selective strategies for high-yielding plants.



Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidificationDejonghe W, Kuenen S, Mylle E, Vasileva M, Keech O, Viotti C, Swerts J, Fendrych M, Ortiz-Morea F, Mishev K, Delang S, Scholl S, Zarza X, Heilmann M, Kourelis J, Kasprowicz J, Nguyen L, Drozdzecki A, Van Houtte I, Szatmari A, Majda M, Baisa G, Bednarek S, Robert S, Audenaert D, Testerink C, Munnik T, Van Damme D, Heilmann I, Schumacher K, Winne J, Friml J, Verstreken P, Russinova ENature Communications, 7, 11710, 2016
V-ATPase-activity in the TGN/EE is required for exocytosis and recycling in ArabidopsisLuo Y* Scholl S* Doering A* Zhang Y Irani N Di Rubbo S Neumetzler L Krishnamoorthy P Van Houtte I Mylle E Bischoff V Vernhettes S Winne J Friml J Stierhof Y Schumacher K* Persson S* Russinova E*NATURE PLANTS, 1, 15094, 2015* These authors contributed equally
The Clathrin Adaptor Complex AP-2 Mediates Endocytosis of BRASSINOSTEROID INSENSITIVE1 in ArabidopsisDi Rubbo S, Irani N, Kim S, Xu Z, Gadeyne A, Dejonghe W, Vanhoutte I, Persiau G, Eeckhout D, Simon S, Song K, Kleine-Vehn J, Friml J, De Jaeger G, Van Damme D, Hwang I, Russinova EPLANT CELL, 25, 2986-97, 2013
SPEECHLESS integrates brassinosteroid and stomata signalling pathwaysGudesblat G, Schneider-Pizon J, Betti C, Mayerhofer J, Vanhoutte I, Van Dongen W, Boeren S, Zhiponova M, De Vries S, Jonak C, Russinova ENATURE CELL BIOLOGY, 14, 548-54, 2012
Fluorescent castasterone reveals BRI1 signaling from the plasma membraneIrani N, Di Rubbo S, Mylle E, Van Den Begin J, Schneider-Pizon J, Hnilikova J, Sisa M, Buyst D, Vilarrasa-Blasi J, Szatmari A, Van Damme D, Mishev K, Codreanu M, Kohout L, Strnad M, Cano-Delgado A, Friml J, Madder A, Russinova ENature Chemical Biology, 8, 583-9, 2012

Job openings


VIB research sheds new light on the defense mechanisms of plants

10/10/2016 - ​When plants are damaged, they face significant dangers including the loss of nutrients from and the entry of microbes into the plant. As a result, plants have evolved sophisticated defense mechanisms.

Stomata development in plants unraveled – a valuable discovery for environmental research

03/04/2012 - Gent researchers have unraveled the action mechanism of the main plant hormone that regulates the development of stomata. This breakthrough has important implications for environmental research and for protection of plants against disease and stress.

Jenny Russinova

Jenny Russinova

Research area(s)

Model organism(s)


​​PhD: Norman Borlang Inst., De Montfort Univ., Leicester, UK, 1996
Postdoc: Norman Borlang Inst., UK, 1997-98;
Postdoc: Wageningen Univ., Wageningen, The Netherlands, 1998-2005
VIB Group Leader since 2006

Contact Info

VIB-UGent Center for Plant Systems BiologyUGent-VIB Research Building FSVMTechnologiepark 927 9052 GENTRoute description