Scientists pinpoint surprising origin of melanoma

12 October 2017
​Led by Jean-Christophe Marine (VIB-KU Leuven), a team of researchers has tracked down the cellular origin of cutaneous melanoma, the deadliest form of skin cancer. The team was surprised to observe that these very aggressive tumors arise from mature, pigment-producing cells called melanocytes. As melanoma develops, these cells are eventually reprogrammed, lose their differentiated features and become invasive, migratory cancer cells. This knowledge is vital to understand how these melanoma lesions are formed, facilitate their early detection and develop preventive treatment avenues. The results of the study are published in the academic journal Cell Stem Cell.

Although cutaneous melanoma is common and often fatal, the precise cellular origin of this malignant cancer has been under debate for quite some time. Prof. Marine and his team generated a refined mouse model that faithfully reproduces the early stages of melanoma development in humans. The researchers used single-cell tracking and profiling approaches and live imaging techniques to identify the earliest cellular origin of melanoma and monitor the changes that these cells experience as they first become malignant and then transform into invasive cancer cells.

Pigmented melanocytes identified as cancerous culprits
Mature melanocytes, which produce pigments in the upper layer of the skin,  contribute to melanoma formation. These highly specialized cells, which normally do not divide, did divide when exposed to a specific melanoma-causing mutation. The researchers observed them covering the entire topmost layer of the skin and forming benign lesions before changing their appearance. The cells progressively lost the characteristics that make them melanocytes. At that point, they began invading deeper skin layers as migratory and invasive cancer cells.

Prof. Jean-Christophe Marine (VIB-KU Leuven): “Unexpectedly, this ability to divide and contribute to melanoma development contrasted with the activities of other cell populations, such as melanocyte stem cells found in hair follicles, for instance. Because these other skin cell types showed no signs of expansion or transformation, our analysis highlights pigment-producing cells as the originators of melanoma.”

Microenvironmental cues play a role
The study suggested that microenvironmental cues dictate the cell of origin of melanoma. Factors secreted by the locations containing non-pigmented melanocytes, such as melanocyte stem cells, appear to be able to suppress early cancer development. Identifying these factors will require additional studies, which may ultimately lead to the identification of novel anti-melanoma therapeutics.

Prof. Jean-Christophe Marine (VIB-KU Leuven): “Importantly, our work also provides clear evidence that non-dividing, differentiated cells with highly specialized functions can be genetically reprogrammed later in life to become cancer-causing cells.”

Buying valuable time for patients
There is clear evidence that thin, early-stage melanomas have better prognoses, since surgical removal at this stage is extremely effective. The identification of the cancer cell of origin has important clinical implications, as it enables doctors to detect malignancies earlier and predict tumor behavior more accurately.

Note: The lab of Jean-Christophe Marine is part of the VIB-KU Leuven Center for Cancer Biology

Kohler, Nittner et al. Mouse Cutaneous Melanoma Induced by Mutant BRAF arises from expansion and dedifferentiation of mature pigmented melanocytes. Cell Stem Cell 2017.

Questions from patients
A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: patienteninfo*Replace*With*At*Sign* Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

Jean-Christophe Marine, David Nittner, Corinna Köhler, Florian Rambow